
Performance Ana]ysis ancl Optimization on the IJC1.A
Parallel Atmospheric General Circulation Model (Me

John 1 m, Robcri 1 {crram
Jet Propulsion 1 -aboratory, California institute of “J’kchnology, l’asadcna, CA 91009

John 1 Jarrara, Carlos Mcchoso
l>cparmcnt of Atmospheric Sciences, lJnivcrsity of California, 1,0s Angeles, CA 90024

Abstract

An analysis is presented of several factors influencing the performance of a parallel in@c-
mcntation of lhc lJCJ .A atmospheric general circulation nmicl (A(iCM) on massively parallel con~-
puler systems. Several modifications to the original parallel AGCM code aimed at improving its
numerical cfficicncy, intcrproccssor communication cost, load-balance and issues affcc(ing singlc-
nodc COCIC performance arc discussed. “1’hc impact of some of the optimi?,ation strategies on the per-
formance of the AGCM code as we implcmcntcd on several staic-of-the-ar[parallel computers,
including the lntcl l’aragon and Cray ‘J31>, is prcscn[ed and analyzed.

1.1 ntroclucfion

‘J’hc climate system is characterized by complex interactions and feedbacks among its
components. General circulation models (GCMS) of Ihc atmosphere and ocean arc among the most
powerfu] tooJs available for studies of the climate system and its variability, Numerical simulations
performed using GCMS are among the most computationally cxpcnsivc scientific applications
because several three dimensional physical Jiclds need to be updated at each time step by solving a
large syslcm of partial differential cqnations governing fluid motion on a rotating sphere, and also
bccausc a very long sinmlat ion period is required to produce st alisticall y significant nu mcrical
results. Parallel computers arc thus natural computing tools for GCM simulations.

An at mosphcric GCM model was dcvclopcd at lJCI .A by Arakawa and co-workers [1]
during the scvcntics and the model is still being constantly uJlgradc4J by atmospheric scientists
there. ‘1’hc first parallel implementation of the IJCJ .A AGCM moclcl was dcvclopcd as a collabora-
tive effort bctwccn 1.awrcncc 1.ivcrmorc National 1.aboratory and the lJnivcrsit y of California, 1 m
Angeles. The results presented in the paper by Wchncr ct al. [2] revealed that the parallc] efficiency
of the code on large numbers of processors (> 100) is mcdiocrc. in other words, the COCIC does not
“scale” well to a large number of procasors. 1 lcrc scalability y refers to the rcduc[ion of execution
time as more processors arc used for a fixed problcm size. ‘J’hc main objcclivc of our work is to ana-
lyz,c the AGCM algorithm components and its parallel inlplcmcntation from a computational per-
formance pcrspcctivc, find bottlcnmks that hinder the parallel scalability y of the code, and usc better
algorithms and cfficicnt parallel itllj~lcl~lcl~tatioll strategies wherever possible to n~axinli7c the per-
formance of the AGCM code on scalable parallel systems.

‘l’his paper is organized as follows: %ction 2 gives a brief overview of the struchlrc of the
parallel lJC1,A A(3CM code and an analysis of its parallel pcrfomancc, Section 3 discusses our
optin~i7,ation strategies on the code to improve its performance on massively parallel systems, Scc-

1

lion 4 presents a performance comparison bet wccn the modified paral!cl code and the original one,
Scclion 5 offers some of our thoughts on developing reusable template moclulcs for GCM sinmla-
tions, and finally Section 6 gives our conclusion.

2. Slrudurc and pcrlormatm 01” Ihc parallel AGCM code

‘1’hc lJCI .A A(iCM code is a large software package which simulates many physical pro-
cmscs. ‘1 ‘he reader is referred to Suarcz et al. [3] and refcrcnccs therci n for a more complctc descrip-
tion of the representations of the physical processes. ‘J’here arc two major components of the code:
i) AGCM/hydrod ynamics, which computes the evolution of the fluicl flow governed by the primitive
equations by means of finite-differences, and ii) AGCM/Physics, which computes the cffcc(of pro-
cesses not resolved by the model’s grid (such as convection on C1OUCI scales) on processes that arc
resolved by the grid. ‘l-he results obtained by A(Kh4/I%ysics arc supplied to ACKM/1 Iydrodynan~-
ics as drivers for flow simulations. ‘l’he AGCM code uses a three dimensional staggered grid for
velocity and thermodynamic variables (potential temperature, pressure, specific humidity, oLonc,
etc.). This three dimensional grid is formed by the Arakawa C-mesh [1] in t hc horizontal (latitude]
longitude) directions with relatively small number of vertical layers (usually much fewer than the
horizontal grid points). A cell in such a grid is a cube in spherical geometry with vclocit y conq>o-
ncnts ccmtcrcd on each of the faces and the tl~crfllo(lyjlarl~ics variables at the CCII center. ‘1’hc
AGCM/11 ydrod ynamics itself consists of two main components: a spectral filtering parl and the
act ual finit c difference calculations. ‘1’hc filtering operation is needed at each ti mc step in regions
C1OSC to the poles to ensure the cffcctivc grid size t here satisfies the Courant -Ikicclrich-l ,cvy (Cl U,)
condition [4], a stability requirement for explicit time-diffcrcncc schemes when a fixed time step is
used throughout the whole spherical fin it c-difference gri d.

f
AGCM Main Body IIydrod ynamics

/ \
\ + i +

IIydrod ynamics l%ysics Spectral }:i]tcring 1 ;initc l>iffcrcncc
A I

72% lime on 16 nodes 36% fin]c 011 16 nodes

86% {ime on 240 nodes 49% lime on 240 nodm

Figure 1. I’;xecut ion t inm of’ major components in the lICI.A AGCh’1 code

A two-dimensional grid partition in the horizontal plane is used in the parallel in@cmen-
tation of the lJCI .A ACJCM model. ‘l’his choice of grid partition is based on the facts that column
(vcrlical) processes strongly couple the grid points which makes the parallclization less efficient in
t hc column direction, and that the number of grid points in the vertical direction is usually small.
liach subdomain in such a grid is a rectangular region which contains all grid points in the vcrlical
direction. With this grid patliticm, there arc basically two types of intcrprocessor col~ll~]tl~licatio~ls
involved in the parallel A(3CM simulation. Message exchanges arc needed among (logically) neigh-
boring, processors (nodes) in finite-difference calcu]at ions; non-nearest neighbor message-passing is
needed for implcmcnling the spectral filtering operations. ‘J’iming measurements on the main con]-
poncnts of the original parallel AGCM code, using the 2 x 2.5 x 9 (lat x long x verlical) rcsolu-

. .

tion which corresponds to a 144 x 90 x 9 gricJ, is shown in l;igurc 1.
As shown in J;igure 1, the AGCM main body consists of’ a hydrodynamics module and a

physics module, with preprocessing and postprocessing parts excluded, Since preprocessing and
pos[promssing steps arc only performed once, whereas the main body parl is iterated through a time
stepping loop in the ACTCM simulation, the latter is absolutely dominant in terms of cxecu!ion ti mc.
Comparing the two modules in the main body, we can see the hydrodynamics part is dominant in
cost especially on large numbers of nodes. Fur(hcrtnore, our timing analysis on the hydrodynamics
par[indicates that the spectral filtering is a very costly component with poor scalability to large
number of nodes (se~ N’igurc 1). Although the usc of spcct ral filtering in the LJCI .A AGCM model
improves the computational efficiency of the finite-diffcrcnee calculations by enabling the use of
uniformly larger time st cps, the high cost of pcrformi ng the filtering scans to offset a large pari of
this performance gain. The inferior performance of the Jiltcring operation is due to the usc of an
inefficient filtering algorithm and Ihc cxistcncc of a scvcrc load imbalance in the filtering stage.

It is clear from I ;igure 1 that in order to substantially improve the overall performance of
t hc AGCM code, some optimi zation musl be clone first on the tltcring part of the code [2].

3. Optimization strategies ancl il]]])lcl)lcl]taliol]s in the parallel AGCM code

‘1’here arc primary two ways tO iI])prOVC thC J.3CrfOI’lIltinCC Of a JX3f’dlC] code rll Illli ng on a
distributed memory rncssage-passing computer. Onc way is to optimize its single-node performance
by using a more efficient computational algorithm, making more efficient usc of cache or clin~inal-
ing rcdu ndant operations in the code. Single. node optimiz,ations can usually bc achieved by rest ruc-
turing the data s!ruc{ures and other computational parts of the mdc. Another way is to improve its
scalability y to large numbers of processors so tha[onc can cit hcr reduce the solution ti mc for a large
problcm by using more processors, or can SOIVC increasing] y larger problems with more processors
within a fixed amount of tirnc, l’hc scalability y of a parallel code is affcctcd both by the ratio of conl-
munication cost to computation cost and the dcgrcc of load imbalance in the code. As stated above,
our timing results indicate the cost of spectral filtering procedure is a dominant part in the parallel
A(KM code cspcciall y when running on a large number of nodes. We therefore focused our first
effort on improving the ovcral I performance of the filtering part in the AGCM code.

3.1) Spcclral filtering in lIIC llC1.A AGCM model

“J’hc filtering algorithm used in the lJCI ,A AGCM model is basical 1 y a set of discrete l/ou -
ricr filters specifically designed to damp fasi-moving gravity-inertial waves near the poles. q’hcsc
wave modes bccomc nutncricall y unstable when the 0‘1. condition is violated in the vicinit y of the
po]cs as a result of the incrcasing]y smaller zonal grid distances as onc approaches the poles in a
uniform longitude-lat iludc grid. ‘1’hc filters contain a latitudinal dcpcndcnce but arc applied over the
cmlJ~lctc longitudinal domain on every vertical layer. As discussed in [1], the tiltcring oJ~cration
takes the form of an inverse IJouricr transform in wavcnumber space as

(1)

where $(s) is the lkmricr transform of a generic variable $(s) to be filtered, ~(s) is a prescribed
function of wavcnumbcr and latitude, but is independent of time and height. In particular, lwo types
of filtering arc performed in the lJCI .A AGCM code. Onc is the so called “strong Jlltcri ng” which is
applied to about one half of the latitudes around the po]cs in each hemisphere; the other is a “weak
filicring” which is applied to about one third of the latitudes around the poles in each hemisphere.
‘J’hc convolution theorem for lhrrier transforms states that the filtering as defined in (1) is nlathe-
matically equivalent to the convolution

($’(i) = ~ S(n)($(i - n) . (2)
.$=]

In the original AGCM code, filtering was performed using the convolution form in (2). IJI its paral-
lcI i~)ll~lcll~cntatio~l, the summation defined in (2) was inq>lcmcntcd in several ways, involving either
cal~~il~tlllicatio~ls around “processor rings” in the latit udi nal direction, or communicant ions in binary
t rem [2]. 1,ctling N denote the number of grid points and P the numtwr processors in the lat it udinal
direction and since no partial summation is pcrformcxl during the data transfer, the ring approach
requires l’log P messages and a total transfer of NP data clements; the binary tree requires 0(2P)
messages and a transfer of O(NP + N log}’) data clements [2].

‘1 ‘he high cost of the filtering compared tot he rest of the hydrod ynamics module as shown
in 1 iigurc 1 stems from two imporlanl factors. ‘J’hc first is the usc of umvolution formation (2) in
physical space for the filtering. Assuming a tllrw,-dir~~cllsiollal grid for filtering has dimensions
N x M x K, where N, M, K, arc dimensions in latitudinal, longitudinal and vcrlical directions,
respective] y, the computational cost of doing convolution on the grid is of order 0 (N2 x M x K),
whereas the cost for the rest of hydrod ynamics COCIC is of order O(N x M x K). ‘J’hc second is the
cxistemce of a scvcrc load imbalance caused by the fact that only subdomains at high latitudes
require filtering. Solutions to these probhms arc somewhat obvious: (i) usc the fast Irouric.r trans-
form (l U’-I’) instead of performing direct convolution for the filtering, and (ii) perform load balanc-
ing before filtering by rcdistribut ing cJat a to bc filtered from processors cxmai ning high lat i[udc
subdomains to processors containing low latitude subdomains which either have very little filtering
to do or arc completely idle during the filtering stage.

3.2) IMfkicnl pantllcl spectral filtering

Since the spectral fillcring is applied to lines of grid points at high latitudes and the grid
ckxxmposit ion for tbc UC] .A AGCM code is a two dimensional dccon]posit ion in the horizontal
plane, the I~JV’ operation also requires intcrprocessor col~)t~ltlllicatioll, ‘J’here are at least two possi-
bilities to parallcliy,c the Flrl’ filtering. One is to develop a parallc] one dimensional ld ~1’ procedure
for processors on the same rows in the processor mesh, so thai this procedure can be applied to
every]inc of data to be filtered. T’hc second approach is to partition the data lines to be Jltcrcd and
redistribute thcm among processor rows in the latitudinal direction so that 1 I’1’”J’s on each data line
can be done locally in each processor. ‘J’hc second approach essentially involves a data array trans-
pose. I’hcsc };1 ~“1’ Jlltcring approaches have a computational cost of O(N x log N x M x K). Again
let ling N denote the number of data elements and P denote the number of procfissors in the lat itud i-

. .

nal direction, the approach using the parallc] one dimensional 1~1 rl’ requires 0(1’logP) messages
and a transfer of O(N logN) data elements, while the approach using IU;’1’ with data transpose
requites 0(P2) messages and a transfer of O(iV) data elements. ‘1’hcrcfore the first approach
requires fewer messages but exchanges larger amounts of data than the second approach.

We chose to in~plemcnt the second approach for the spectral filtering in the AGCM code.
‘l’he main reason for our choice is the relative simplicity of in~plmcnting the data transpose and the
possibi]it y of using highl y efficient (somct imcs vendor provided) 10 r]’ library codes on W11OIC lat it u-
dinal data lines within each processor.

[i ‘

0+0+0 ““” 040+7 ● **
7 +0+ 0 1

o+ 0+0 ● *” O+ 6+ 1 ● * ,
7 +()+0

1+1+2 ● ** 1+2+0 ● **
3 +1+2

8+8+8 ● *” 7+0+0 ● ** \
]~ig[lrc 2. An illusf ration of (Ialti row re(iistribul ion for a](M(] bahtncd filtering.

3.3) l.oad-balancd ptiralld FIT fil[ering

“10 solve the]oad-balance problem in filtering, we need to rcdiswibute the data rows to be
filtered along the longitudinal direction. In the lJC1 .A AGCM code, the spectral filtering is per-
formed at each time step before the finite-difference procedures arc called. Weak and strong filter-
ings are performed on different sets of physical variables, one variable al a time in the original
AGCM code. lb maxitnize the performance efficiency from the load balance procedures, wc reor-
ganized t hc filtering process so that all weakly filtered variables are filtered concurrcntl y, as arc all
s{rong,ly filtered variables. This change is possible because there is no data dependency among
weakly fiherecl variables, nor among strongly filtered variables in the filtering process. l~ascd on
these considerations, wc decided to implement a generic load balancing module which dots the fol-
lowing given an M x N processor mesh, with M processors in the latitudinal direction ancl N pm-
ccssors in the longitudinal direction, with 1. variables to be filtered (wcakl y or strongly), each wi(h
I<j (~ = 1 ...1.) rows of data m bc filtered, the goal of load balancing is to redistribute the clata rows
in the]ongitodinal direction so that after redistribution, each procxxsor will contain approximately
(since total number of data rows to be filtered arc osually not divisible by N)

[’)i I/j / N (3)

j=]

rows to be filtered. If it could be assumed that exact] y half of the data rows in one hemisphere arc to
be filtered, which is the case for the strong filtering in the AGCM code, the implementation of data
redistribution for load balancing would be a relatively simple task. All that woLlld be required in this
case is to redistribute data rows in a way which is symmetric about the rnidcl]c latituclc line in each

m--m
J~igurc 3, Data row transpose in latitude (Iiredion following lhe row redistribution

shown in Vigure 2.

hmisphcrc. Since we need to do load balancing for both weak and strong filterings, a more general
scheme is needed. We therefore decided to inq~lcmcnt a code module which can produce a balanced
load in (3) regardless of the number of rows to be fillcrcd in each hemisphere. 1 tigurc 2 shows an
example of how data rows for three variables arc redistributed in a hemisphere in an M x 8 proces-
sor mesh. l’hc load redistribution is followed by a data row transpose and redistribution among pro-
cessors in the latitudinal direction. 1 ‘igurc 3 shows the data row transpose performed aft cr the row
rcdist ribution shown in Pigurc 2. The actual }(1 rl’ filtering is performed on data rows after the data
transpose, which is then followed by inverse data movements to restore the data layout which
cxis!cd prior to the filtering.

1 he 10 the gencralit y required for t he load-balancing and parallel 1 ;J ‘-l’ module, some non-
trivial set-up code is needed to comtruc{ information which guides the data movements for the load-
balancing and load-balanced parallel JiJ4”J’ at each time step of hydrodynamics calculation. “1’hc set-
up involves substantial bookkeeping and intcrprocessor co~l}~~l~lllicatiol~s. Its cost is not an issue for
a long AGCM simulation since it is done only once, and its cost is also nearly independent of
AGCM problem size.

3.4) l,oad balfincing flie pl]ysics component

‘J’hc physics parmcteriz,ation componcnl h) the ACiCM code consists of a large amount of
local computations with little inlcrproccssor communication required Llndcr a horizontal parlition of
the grid. ‘J’he measured parallel efficiency of the physics componcnl with a 2 x 2.5 x 9 grid resolu-
tion is about 61% on 240 nodes on Gay ‘1311. Since there is no communication cost, it is only the
load-imbalance in the column physics processing that drags down the parallel efficiency. “l’he distri-
bLltiO1l of computational load in the physics conlJ>oncnt varies dynamically with sJ~acc and lime in
the AGCM simulation. ‘J’he amount of computation required al each grid point is dc(crmined by
several factors, including being whether day or night, cloud distribution, and the amount of cLmnlhls
convection determined by the so-called conditional stability of the atlnOSJ)hCrC. Adding to the diffi-
culty of physics load-balancing is the unpredictability of the cloud distribution and the distribution
for cumulus convection, which in]Jiics an csti mation of computation load in each processor is
rcqu i red before any efficient load-balancing scheme can proceed.

Several J)ossibilitics of achieving load-balancing have been considered, One way to
achieve a balanced load distribution is to perform a cyclic data shuffling among all processors. SuJ>-
posc t he total number of processors is N, each Jwocessor divides its Jocal data to be processed into N
pieces, sends (N - 1) pieces of the data to other processors, and receives (N - 1) J~icccs of data
from other processors. Pigure 4 shows such a data shuffling among four processors. l’hc cm~J~lctc
data shuffling as shown in liigurc 4 guarantees a balanced load distribution as long as the load distri-

M ‘--- ❑ ’ig’’’”4”scs]:c’’’’’’]:c’;’(’:s”:’fling timong 4 proccss& 10 achieve a
balanced load distritmtmn I’ACII ddtd
piece is in(lmd with 111(’ id 01 the pro-
mmrwhcreil islopr(mssd.

bution wilhin each processor is C1OSC to uniform in space, a reasonable assumption when N is large.
‘lW main drawback of this approach is the cost of performing all-to-all communications with a
cn~~ll~lexityof0(N2), and thcdivision ofcachlocal data inlo Ncqual picccsfor Nproccssorsdocs
not seem to be compulationally efficient when N is large.

An altcrnativeto a complctc data shuffling for load balancing, but also guaranteeing a
good load distribution, is to use an approach similar to the one discllsscd in the previous section for
filtering operations. I;irst, the computation load for each processor needs to bc computed or esti-
mated by some means. 1 Et us look at a specific example for the ease of our discussion. 1 ligure 5
illustrates the steps needed to balance the load among four processors,]n 1 Jigw’c 5A, the computing
load in each processor has been figured out in some way, ancl an integer weight is assigned for each
local load. All the nodes are then assigned a ncw id through a sorting of all local loads. “1’hc sor(ing
of node ids is performed 10 simplify subsequent data movement which attempts to minimize the
amount of interproccssor communication. With the ncw node ids and weights of local load avail-
able, the required data moves can be carried out in a way similar to that for balancing the filtering
load, as shown in l;igure 511. liigme SC shows the ncw load distribution after the data movement. It

Node id = 1 Node id = 2 Node id =3 Node id =4
lx)a(t = 65 1 w+(I =24 1 mad = 50 l.oa(l = 15

A: initial load distribution will] original node id.

Ncw node id = 1 New node i(l = 3 New node id =2 New node id =4
l.oa(l = 65 load =24 I.oa(l = so 1AM(I = IS

14 4 11 4 4
1 . ..-.”:--:::::fi::-J -... ----- ‘---: -:-:_n::-J? I

11: No(1c i(ls arc sodd according 10 local data loa(ls.
Rcquird data moves arc shown.

Node id = 1 Node id = 2 Node id =3 Node id =4
1 ,oa(l = 39 Imd = 24+14 1 ,oad = 39 lJoa(l=15+ll+12

C: load ciistrihtion after IOa(l-balancil)g.

l~ig~lre S. SCl)cnK! 2: An alternative wl)icll optin]ixes col~]l]][l!~icatio]l cost.

can be seen that the communication complexity of this load-balancing approach is 0(N), a signifi-
cant in}provcmcnt over the complete data shuffling in scheme 1. large overhead, however, is
incurred in making the optimized data moves possible which invo]vc a number of global c.onm~uni -
cat ions and a substantial amounl of local bookkeeping.’l’his overhead cost was not a serious perfor-
mance issue in the load-balancing for tiltcring because it is the cost from a preprocessing slcp tha[is
done only once during the entire exezution of the AGCM code, but the overhead for physics loacl-
balancing may not be overlooked because it is associated with the cost of each physics load-balanc-
ing. In addition, a decomposition of a local data load into many parts with different wcighls may not
be a convenient thing to do.

‘l’he analysis on load-balancing schcmc 2 and 3 leads us to thi nk that it may be mom prac-
tical in our case to devise a load-balancing strategy that may bc less robust (if it is applied only

Node id = 1 N()(IQ id = 2 N(Ide id =3 N()(lc id =4
I,oad = 6S lmd = 24 I.oad = 30 IA)ad = 1s

A:]nititil I(M(I (Iisfrilmtion in each processor.

Node id = 1 Node id = 2 Node i(l =3 N(Kle id =4
Rank = 1 I-!allk = 3 Rank = 2 Rank = 4
Load = 65 l.oa(l =24 load =30 l,oad = 1S

I A I A

II: Nodes are assigned ranks. Firsl Imirwisc data moves are shown.

Node id = 1

I

Nde id = 2

I

Node id =3
Rank = 1 Rank = 3 Rank =4
I.oa(l = 40 l.oacl =27 1,oa(l = 27

Node id =4
I{auk = 2
1 ,oa(l =40

L ._d t..-.-! ----- ----._.l
C: Nodes are assigned ranks. Smmd pairwisc (lat~ moves are slmvn.

I Node id = 1 I N()(lc id = 2

I

Node id =3
load =34 l.oa(l = 27+6 lx)ad = 27+6

Node id ❑ 4
lx)acl =34

11: load (Iistribulion aflm- second data nmmwnt.

Figure 6. Scheme 3: l.oad+alancing wi[tl pairwisc dah exchanges.

once) but more cost-efficient and easier to implement. ‘J’hc approach that wc currently decide to
adopt requites only pairwisc intcrprocessor communications ford at a movement and a small amount
of bookkeeping. The steps for this scheme can still be illustrated by using the previous example for
four processors, as shown in Figure 6.”1’hc schcmc also begins with an evaluation of the local load in

8

each processor, as shown in Figure 6A ‘l’he data load is sorted and a rank is assigned to each proces-
sor as a rcsu]t of the sorting, and a pairwisc data cxchangc between processors with rank i and rank
N - i + 1 is initiated, as shown in liigure 611, IJuc to the limitation of pairwise data cxchangc, the
rcsu]tcd load distribution from the first data move may not be satisfactory. If this is the case, the
load sorling and pairwisc data cxchangc can bc repeated once as shown in Vigure 6C. 1 iigurc 611
shows the load distribution after the second data move. Since each load-balancing cycle (sorling and
pairwisc data moves) is relatively low in cost, the cost of performing it a fcw times could still bc lCSS

than that of the previous two schcmcs.
‘J’hc number of times nccdcd for sorting and pairwisc communication in schcmc 3 to

achicvc a satisfactory load-distribution clearly clcpcnds on the initial load distribution, ‘M evaluate
the cffcctivcncss of scheme 3 for load-balancing the actual physics component code, wc first in@c-
mcntcd the load-sorting pail in schcmc 3, and usc it as a tool to J)crform load-balancing on the phys-
ics conlJ>oncnt and to evaluate t hc result without actually moving the data arrays around. ‘Jb
csli mate local computing load in each processor, a timing on the previous pass of physics cony> o-
ncnt was pcrf’ormed at each processor and the result was used as an estimate for the currenl physics
conlJnlling load. ‘lhblcs 1 -3 show the simulation results on 64, 126 and 252 nodes on Gay ‘J31>.
With P J~roccssors, the J>crcxmtagc of load-imbalance shown in the last column of the tables is
defined as

Average] ,oad =
[51’Oca]]Oa(JP

PerccntagcOfl .oad Inlbalancc = (Maxi.oad - Avcragcl,oad)
Avcrag,eI.oad

‘Jhblc 1: l.otid-bal~ncing simulation for physics wi(h a 2 x 2,S x 29 grid
rmolut ion on a 8 x 8 node array ON Clay 1’31)

.—.

Code status

Before load-balancing

After first load-balancing

After second load-balancing

, .——-. –.———–——
Max load Min 1 oad % of load-
(sccond) (second) i mbal ancc

4—-—-4– --- .-—-----l
7.7(I I 6.20 I 9% I.-
7.10 1’----”-””- “- - ‘-”” “- - ‘ - I6.30 I 6%

– — 1 .1—.————1

‘Jhblc 2: l,oad-bnlancing simulation for physics wi(ll a 2 x 2.5 x 29
grid resolution on a 9 x 14 node array on Cray ‘1’31)

I]*Ei:iz$zf::

After first load-balancing

After second load-balancing .

9

‘lhble 3: Loa(l-balancing simulation for pl]ysics will] a 2 x 2.5 x 29
grid resolul ion on a 14x 18 node arrtiy on Cray ‘1’31)

(Me status
Max load Min I -oad % of load-
(SCCO11(1) (second) imbalance

Before load-balanc;~~g‘“”:’’’’1----”’”””’”---” ‘“”””-- ‘--3.;4 I 1:121-”--””48%

‘-1””- ““”1” 1.70 ‘-T

_——
After tirsl load-balancing 2.20 12.5%
.- .—— -

After second load-balancing‘---1 1.92 I ‘- - - - -1.80 1 6%
l..–. ..— –.–1 . ..- .L. _..— —

Scheme 3 can bc seen as an iterative scheme that converges to a load-balanced slate from a given
initial load-distribution state. ~’he “convergence rate” of the schcmc clearly depends on the initial
slate as the results in lhblcs 1-3 indicate. On 126 and 252 nodes, it can be seen from ‘Ihblc 2 and 3
ihat apJ~lication of the scheme twice to the J>hysics component can reduce the percentage of load-
imbalance to a reasonable level. One advantage of scheme 3 is its flexibility of making a conlpm-
mi sc between the cost and accuracy of load-balance. A pairwisc data exchange is only needed when
the load difference in the pair of nodes cxcccds some tolcrancc, and the iteration can stop as soon as
t hc percent agc of load -imbal ancc falls within t hc tolcrancc.

3.4) Singh’ node performance opl imimlion
With the use of the load-bal anccd 1 U rl’ filtering module, we have been able to rcducc the

cost of filtering significantly in the parallel AGCM code (see Scc[ion 4). With the 2 x 2.5 x 9 I’cs-
olution on 240 nodes, for example, the filtering cost dropped from 49% of the cost doing hydrocJy -
namics part to about 2J fIo. Our timing of the code indicates the COS[of communication for
exchanging values at ghost grid poinls for the finite-ctiffcrcncing is relatively insignificant, usllally
around 10% of the cost of the hydrod ynamics component on 240 nodes. With a]oad-balancd phys-
ics component, wc expect the overall cxccut ion time of the AGCM coctc be reduced by 10-15% on
240 nodes. We now turn our discussion to the issue of single-node performance optimi~,ation for the
AGCM code. As is typical for a real-world aJ>J>lication, the overall performance of the J~arallcl
AGCN4 code is well below the peak J)crformanccs on both lntcl Paragon and Gay 131) nodes,
which is usually an indication that the cache efficiency of the code is poor. Our main goal is to
i mprovc the single-node performance of the code - minimize the cxccu(ion time of the code on a
single processor - with a lllacilillc-irld cJJclldcllt and Jwoblcm-sii’,c robust aJ~proach (i .c. wit bout
resorting to any assembly cocling). We selected a dry-convection routine from the hydrodynamics
conlJJoncnt and a cu nmlus connection rouli nc from the Jlh ysics component as the represent at ivc
candidates for single-node performance analysis and oJXin~ization because of the heavy local com-
Jmting involved in these routines and their cost weights in their rcsJJcctivc conlJ~oncnts. Our optinli-
~,ation cfforl started from improving some of the more obvious code segments, such as eliminating
or minimizing redundant calculations in nested 100JM, replacing some loops by Basic 1.incar Alge-
bra Subroutines (111 .AS) library calls for vector copying, scaling or saxpy opcrat ions. We also tried
to break down some very large loops involving many data arrays in hoping to rcclucc the cache miss
rate. When aJ~plying these strategies to the dry-convection routine, wc were able to cut down its cxc-
cut ion time on a single Gay ’131) node by about 20%.

10

B] ,AS routines are usually faster than programmer’s hand-coded loops in a high-level pro-
gramming language for nlatrix-vcclor data processing because they were opti miml for pipclining
cnmpuling and cache eftlcicncy with assembly coding. It seems, however, difficult for us to utilize
the 111 .AS library beyond some 10W-1CVCI routines in a few places of our code. 1 n a code based on
finite-diffcrencing schemes as the A(iCM code, it is usually hard to cast major par[s of computation
in(o matrix-vcc[or t ypc operations. lns{ead, wc found thal a large part of the computations in our
sclcc[cd routines can be convcrkd into what we call “pointwisc v~tor-~ll~llti~~ly”, which, for cxan]-
plc, has the form in a two-dimensional nested loop:

IIOj=l, N
l)oi=l, M

C(i, j) = A(i, j) x }](i, .Y)
I:NDDO

liNIXIO
where the subscripts can be either a constan(or equal to j. ‘J’hc computation in the above loop is not
one of the operations defined in the current B] .AS library (e.g. on Gay ‘1311). Wc think one possi-
bility 10 achieve good performance for such a loop is to dcvc]op an optimized library routine in
asscmbl y 1 angu age which can recursive] y perform the fol Iowi ng opcrat ion on two vectors
(1 = {fll, a2, ..., a,l} and h = {hi, b2, b.ll}

a 8 b= {(711)1, (izbz, 0,,,1),,,, 0,>1+]b], (12,),1),,,, . . . } (4)

where it is assumed that n is divisible by M. ‘1’hc interface of the rou[ine can be such that it takes as
input a set of data arrays and returns the result array. If some optimization on stich a pointwisc vcc-
tor-nmltiply operation is possible in terms of cache and pipclining, there is a good chance for us to
i mprovc single-node pcrformancx for the ACXM code in a pcmablc and robust fashion.

‘1’hc general idea of cache efficiency optimization is to explore data locality of an applica-
t ion so that the data existing in the cache can be reused as much as possible. In a finite-d iffcrcncc
application such as the AGCM code, a major parl of the local computations lie in the evaluations of
finite-difference equations whic}l involve a number of discrete fields corresponding to physical vari-
ables defined on computational grids. At each grid point indexed by (i, j, k), the following Iypc of
code frcqucntl y occurs

r(i, j,k) = l)lfl(i, j,k)+ . . . +D,,,f,,,(i, j, k), (5)

Whcrcj (i = 1, m) are discrete fields and D; (i = 1 .,. m) arc stencil operators. Although it seems
natural, as done in the AGCM code, to allocate storage corresponding to discrete fields in (5) as sep-
arate data arrays, the cache efficiency in computing (5) on those separate arrays is usual t y rat hcr
poor when the typical array size is much larger than the cache size or when clata stored in a large
nun)ber of arrays are referenced in a statement of form (5), because in sLIch cases the cache-miss
rate can bc very high. One alternative to allocating separate data arrays is to dcclarc a single away
for storing all the discrete fields in (5).]n a l~ortran code, one can thus define an “block-ori-
cntwl’’array of the form

f (m, i dim, jdim, kflim). (6)

11

‘1 ‘IIC usc of a data array of the form (6) to evaluate (5) could, in principle, rccluce the cache-miss rate,
because grid variables in the neighborhood of a ccr(ain cdl arc stored closer to each other in nlcnl-
ory than the case when separate arrays are uses. When data arrays of the size 32 x 32 x 32 in form
(4) arc used, our test CXXIC evaluating a seven-point I .ap]ace stencil applied to several discrctc fields
showed a spcxxl-up a fac(or of 5 over the usc of scparalc arrays on the lntcl Paragon, and a speed-up
faclor of 2.6 was achieved on Cray’131J fort hc same size data arrays. JMcouragcd by this result, wc
tried the usc of block array in the dry-ccmvcclion routine, where a about a dozen of threc-clinlcn-
sional arrays were combined into onc single array. A performance comparison between the COCJC
with block array and the code with separate arrays did not show any advantage of using the block
array. 1/or some siycs of dat a array, the code with the block array undcrpcrformcd the code with sep-
arate arrays. A more careful examination of the dry-convection routine rcvcalcd some conflicting
factors regarding the selection of a good data structure for cache efficiency. A basic fact is that the
dry-convection routine cent ains many different t ypcs of array-processing loops which rcfcrcncc a
varying number of data arrays. “l’he block array may bc a bct[cr data structure for cache efficiency in
a loop rcfcrcncing all the grid variables in the block array, but it could be a worse data structure
(than the scparalc arrays) for code in other loops wbic.h only rcfcrcncc a small subset of grid vari-
ables in the block array. It is thcrcforc not easy to Jlrcdict Ibc overall cffczt on the cache perfor-
mance for a non-trivial code when a block array or separate arrays arc used. A side-effect of using
block array is the poor readability y of the code, which makes it cr~or-prone and harder to debug.

Ihble 4: AGCM 1 imings (sccoll{ls/sill)tllalcfi day) with old fillcring module on lnlel Ptiragon
grid rmolulion~ 2 x 2.5x 9

~-- -—
—T

Node mesh l>ynamics

r “-- ““-1“--- ““’””-=””-”---”-”-l x l- 8702

t- 4 X 4 7-”-’” “-””-848.S”
I ---–-—— -—–- -4
I 8 x 8 I 356

t--”” ‘“””----8 x 3 0 3 186

IJynamics
Speed-up

1.0

10.3

23.8

46.8

‘lbtal time
(I)ynamics and

Physics)
_-. —

‘“14010 ‘-

1177 -

443.5

216

‘Ihblc 5: A(3CM timings (sccol)(ls/sil]l(tltile(l day) willl new filtering module on]nld l’aragon
grid rcsolulion: 2 x 2.5 x 9

I ‘“----”--”---”-Nodc nlCSh

1--- ._..1X1

4 x 4

8 x 8

8x30

.— ~-—— ..- .— ., ..—.

l>ynamics “lbtal time
IJynamics

SpCCd-UJ> (Ilynamics and
Physics)

639.0 -

T -” - -” - ‘--””--”12.6 I 992 .6 “““

I “--””-
—

2 0 7 . 5 38.9 1 306.0

87.2 ‘1---- “–-”’ ””-”-”92.6 t-‘“1 1-9.0
1.. 1

12

show that the scaling of load-balanced 1 U rl’ filtering for the 9-layer model is abou[4.74 JU nning on
240 nodes versus running on 16 nodes with a parallel efficiency of 32%, and the scaling of load-bal-
anced filtering for the 15-la yer model is about 5.87 with a paral Icl efficiency of 39%. ‘1’hc improved
efficiency for the 1 S-layer model reflects the higllcr ratio of local computational load over intcrpro-
cessor communication cost when more vertical layers are added to the AGCM model. Although not
showJ~ here, we found the scaling of the whole AGCM COCIC for the 1 S-layer model is about the
same as the 9-layer model. ‘l’his could bc the result of the fact that in the 1 S-layer model, some addi-
tional load-imbalance is introduced in other parts of the AGCM code. We would even expect better
scaling be achieved for the parallel filtering as well as for the overall AGCM code when a 1x1.25
by 15-Jaycr version is used. The execution times also consistently show that the parallel AGCM
code runs about 2.5 times faster on Gay 31) than on lntcl l)aragon.

‘lhblc 8: TOltil fillcring limes (sccfJ]l{ls/si]ll[lIalc(I day) on lnld
l’arqym for lhe 2 x 2.5 x 9 grid rcsolufion

1---- ‘-””--- ‘“ ‘“-”
4 x 8 I 240.0

.
8 x 8 189.5

I 4X30 I 99.6
~—– 4 - - - - -

I 8x30 I 90.0

88.0 53.7

66.4 ““ ‘-“ 38.2”- “““

‘--””-1
—

43.7 22.2

‘lhble 9: Total filtering t imcs (scco]l(ls/si[lltlIalc[l dtiy) on Clay ‘1’31)
for the 2 x 2.5 x 9 grid resolution

~—— T — ‘“--—- ‘– ~- -—.- —--------- -------- ~-—-- ..-–—-- .--—-.. .

I Node mesh I Convolution I IV~J’ without I IV]’ with load
load balance balance

F“--4=+-’~s”””t=t””’--””’-4=6=’’t’’-=-=-
t 4 x 8 1 - - ” ” ” - ” - - - ” - ” - - ” -96.0 1 35.2 1 21.5

I 8x30 I 36.0 I 15.0 I 7.4

S. Sdlwarc design issues for GCN4 simulations

Since GCM simulation codes are typically large software packages containing tens of
thousands lines of code, another goal of our work is to develop por(ablc and reusable library n]od-
UICS and extensible template codes which will bc useful for GCM type applications. ‘1’hc original
parallel AGCM wde was implemented in 1{77 with a generic message-passing interface, ‘J’he por(a-
bil it y of the code was achieved by using macros for message-passing protocols and memory alloca-

14

‘Ihble 6: AGCM timings (sec{Jl~ds/sillllllatc{l day) with old filtering module on Cray T3D
grid resolul ion: 2 x 2.5x 9

EEi:13??‘1’nblr 7: AGCM timings (scc(jll(is/sil~ltllal~){l day) with old filtm-ing module on Cray “1’31)
grid rcsolul ion: 2 x 2.5 x 9

~:“‘:1

l)ynamics ‘Ibtal time
Node mesh IIydrod ynamics sped-up (1 lynamics and

Physics)
_—. -—— —

1X1 3230 1 .(I 4990
.-

4X4 256 1 2 . 6 397

8 x 8 83 3“8.9 122
—..

8x30 35 92.3 48 ““”

4. I’wf’ormamc studies

‘Ilmings have been pcrfornmd on the lntc] Paragon and Cray ‘131> (Some timing on IBM
SP-2 were also performed, but arc not shown here) for the parallel AGCM code with the new fihcr-
ing module and the results were compared to those from the original code. ‘1’hc message-passing
portability of the filtering module was achicvcd by using Ml’] protocols in the code. Since the
lJCl ,A AGCM code uses a NI!’1C3NJ input history file and wc do not have a NIH’CIY(library
usable on Paragon, we had to develop a byte-order reversal routine to convert the history data to usc
on]nt c1 Paragon. We here onl y discuss t iming results obt ai ncd on 1 ntel Paragon, which qualit ativcl y
applies to Clay q’311 and 1 BM SP-2 as WC1l. “lhblcs 4-7 show comparisons of cxccut ion time for the
hydrodynamics part and for the cnlirc A(KTvI code (including physics part) using the 9-layer model
on 1 nt c1 Paragon and Gay ‘131J. ‘J’ablcs 8 and 9 show a comparison of costs for doing the filtering
using different versions of filtering module with the 9-la ycr model, and l’ablcs 10- 11 show the
costs of filt cring in the 15-layer model on Paragon and ’13111/or all the timing runs, a 2 x 2.5 hori-
zontal grid resolution is used. In comparison to the old AGCM code, the hydrod ynamics component
in the new code is a lit[le more than twice as fast on 240 nodes. The scaling (or speed-up) of the
entire code also improved significantly, which is clearly a result of the load-balanced filtering. ‘1’he
load-balanced Iilrli filtering module runs about five times faster than the old convolution filtering
lllOdU]C OJ] 240 nodes for both the 9-layer model and the 1 S-layer model, ‘J’ables 8-9 and 10- 11

13

,.1 . i <n r., . , c,. .-. ?-. — .:- /--1.. /-1...-.1 .1\ 1 ..4..1 1> r....
]~~1~ IV: Jolktl 1111(’1-111~ 11111(’S \SCColl[lS/Sll ll(llfll V(I (Ifl~) Ull Jlll~l l-ZJI iJ~ull luI

lhc 2 x 2.5 x 15 grid resolution

Ft;i;l:::

Node mesh convolution
1/1 1“1’ wit bout FF1’ with load
load balance balance

4 x 4 802 304 2.21
.— —

4x8 “- 566 205 118 ‘“

8x8 - 422 150 “- 85

4X30 217 9 (” 49
.-

8x30 188 “-” - 81 3’7

Table 11: Total filtering fimcs (st:co]l(ls/sitlllilale(l day) on (Jay 1’31) h’
tlw 2 x 2.5 x 15 grid resolution

—.

Node mesh Convolution

‘“-””::i:t”-

1 q rl’ without ltl~l’ with load
load balance balance

4 x 4 320 121 88

4 x 8 226 ‘- 82 47

8X8 168 60 34

4X30 86 38 19

8x30 75. 32:” 15
-.

t ion protocols. l’his macro approach unforlunatcl y also introduced some complications to the code
maintenance and modifications. 1 Iirst the code needs to go through two macro preprocessors before
a standard liortran compiler can be applied, which can cause problems when porling the code to a
new machi nc bccau se macro preprocessors may behave d iffcrcnt 1 y. 1 imbcdd ing macros in the code
also make changes to the cock error-prone if one is not familiar with how macros arc to be
expanded. We think Ihe portability of the AGCM code can be achieved in a simpler and more reli-
able way. Our approach also defines generic interfaces for possibly ~llachinc-dcl~elldcllt operations
such as message-passing protocols and memory allocation, but the il~~j~lclllcl~tatio~l of the intcrfaca
is wrapped in a small number of subroutines. ‘l”hcsc subroutines arc sclcctivcJy conlJ~ilcd deJ)cnding
on Ihc sJwcific machine where the code is to run. We bclicvc our approach can reduce the n~achinc-
dcpcndcnl porlion of the code to a minimum and thus make maintenance and modification of the
code easier, We are also idcnt if ying common algorithms and operation components from GCM
aJ~plications, and develop code modules which are reusable and extensible (as aJ>Jiication tcnl-
p]atcs) in different GCM applications. in our view, candidate components for GCM applications
i nchdc efficient finite-diffcrcncc kernels, parallel spcct ral filters, commu nicat ion mod UICS for
exchanging ghost-point values at domain-partition bouncJarics, enforcing (physical) periodic bound-
ary condition, load-balance modules, and fas[(parallel) linear system solvers for in~Jiicit tinlc-dif-
fcrcncing schemes. We believe, within the scope of GCM applications, these code con~J~oncnts can

15

bc cJcvclopcd in a unified, highly modular and efficient manner, and wc think an objected-oriented
approach (at leasl for building the infrastmclure of a gencxic CiCM application) inqicmcntcd in an
aclvanecd scientific con~Jmting language like 1 ;ortran 90 can be used in the code development. With
these code components available, the prototyping and implementation of a new, portable and effi-
cient CiCM code package for distributed memory parallel machines will be a lot easier.

6. Conclusion and future work

We have shown our analysis and optimization strategies to inlJwove the overall 1 J>crfor-
mance of t he parallel lJCl .A AGCM code on massive] y J~arallcl computers by implementing a load-
balanccd IW1’ filtering module for the hydrodynamics wmponcnl, and a load-balancing module for
lhc physics component. l’crformanec cmnJ~arisons of the AGCM codes with old and new spectral
filtering modules show that a speed-up of a factor 2 is achieved as a result of our work on 240
nodes, and our anal ysis shows that a load-bal anecd physics component could in~J~rovc the A(iCh4
code pcrformanec by an additional 1 (El 57’0. We discussed our cffori on the single-node J>crfor-
mancc optimi?,a(ion for selected subroutines from the A<iCM code, including the lessons wc
learned from our attempt to improve the cache efficiency, and a possibility to achieve better singlc-
node performance for t hc ACiCM code by dcve]oping an opti mimd point wise vcct or-nmlt ipl y rou -
tine, We also addressed our views on making better software design for (iCM applications through
developing efficient and reusable code coJnponcn(s. A conlJ>lctc implcnlcntation of the loacl -balanc-
ing module for the physics component is being developed. single-node performance-tuning is still
one of out main on-going cffork in the performance optimization on the A(iCM code.

Ack]]()\t’lcdgl]lcl]ls

‘l”his work was supporled in pari by the NASA 1 ligh Performance Computing and Conl-
munication for l“tartb and Spaec Sciences l’rojcc(under Grant NAG 5-2224. ‘1’he investigations
rcporbxl here were conducted on a lnt cl Paragon opcrat cd by the Concu rrcnt Supcreomput i ng Con-
sortium at Caltcch and a Paragon located at Jet l’repulsion 1.aboratory, on a Cra y ’131 I system oper-
ated by the Jet Propulsion 1.aboratory, and on 1 Bh4 S1>2 opcralcd by NASA Ames Research Center.

Rcfcvlmc.cs:

1. A. Arakawa and V. I jamb, “Conymtat ional Ilcsign of the I\asic I)ynamical Proccsscs of the
lJC1 A (icncra] Circulation Model .“, Methods in Comp. Phys. 17 (1977) 173-265.

2. M.li Wchncr, A.A. Mirin, P.G. liltgroth, W.]]. IJanncvik, CR. Mechoso, J. l{arrara, J.A. spahr, “
Performance of a l>ist ributcd Memory I{initc-] }iffcrcnec At mosphcric General Circu] at ion
Model.”, Parallel Computing 21, 1655-1675, 1995.

3. M.J. Suarcz, A. Arakawa, and D.A. Randall, “rl’hc Paramctcrizat ion of the planetary boundary
layer in the lJCI .A (icneral Circulation Model: 1 kmnulat ion and Results.”, h40n. Wea. Rev., 111,
2224-2243, 1983.

4. “ 1 ntroduclion to the IJCI .A (icncral Circulation Model: Its J listory, l’resent State and 1 Jut urc
IIirection”, ~JCl .A At mosphcric Scicncs 281 Course Note, Winter 1995.

16

